Step of Proof: p-compose-inject
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-compose-inject
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
B
(
C
+ Top)).
p-inject(
A
;
B
;
g
)
p-inject(
B
;
C
;
f
)
p-inject(
A
;
C
;
f
o
g
)
latex
by (Auto
)
CollapseTHEN ((All (Unfold `p-inject`))
CollapseTHEN ((Auto
)
CollapseTHEN (((
C
RWO "do-apply-compose" (-1))
THEN (Auto
)
)
CollapseTHEN (((RepeatFor (first_nat 2:n) ((
C
FLemma `can-apply-compose` [-3])
CollapseTHENA (Auto
)
))
)
CollapseTHEN (((FHyp 7 [-3])
Co
CollapseTHENA (Auto
)
)
CollapseTHEN ((FHyp 6 [-1])
THEN (Auto
)
)
)
)
)
)
)
latex
T
.
Definitions
Type
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
p-inject(
A
;
B
;
f
)
,
b
,
s
=
t
,
{
T
}
,
P
Q
,
P
&
Q
,
x
:
A
.
B
(
x
)
Lemmas
do-apply-compose
,
can-apply-compose
origin